ARISE Curriculum Guide

Chemistry: Topic 12—Gases/Gas Laws/Kinematic Theory

ChemMatters
Order a CD with 25 years of ChemMatters, $30

Articles for Student Use

Hot Air Balloons, Gas and Go: April 2002, pp. 4-5.
Try It! Make Your Own Hot Air Balloon: April 2002, p. 6.

Articles for Teacher Use

Number and Topic: 2. Measurement
12. Gases/Gas Laws/Kinematic Theory
Type of Material: Student Journal Article and Activity
Building on: Measurement, density
Leading to: Archimedes’ Principle
Links to Physics: Motion and forces, gravity
Links to Biology: Fish utilize swim bladders much like Cartesian Divers
Good Stories:
Activity Description: Article describes what Cartesian divers are as well as the principles that underlie their operation. Instructions are provided for students to build their own Cartesian divers.
4. Atomic Structure
6. Chemical Names and Formulas/Compounds and Elements
10. Phases, Solids, Liquids and Gases (States of Matter)
12. Gases/Gas Laws/Kinetic Theory
16. Covalent Bonds, Molecular Shapes and Intermolecular Forces
17. Water, Aqueous Solutions

Type of Material: Student Journal Article
Building on: Basic knowledge of atomic and molecular structures
Leading to: Modeling, molecular motions, Boltzmann’s distribution, composition of air, structure of water, polarity, hydrogen bonds, structure of ice

Links to Physics:
Links to Biology:
Good Stories:
Activity Description: This article, written by the late Isaac Asimov, takes the reader on an imaginary journey where he/she becomes smaller and smaller until he/she can see individual atoms and molecules. The article goes on to describe several molecular structures and motions.

5. Radioactivity, Fusion, Fission
8. Chemical Reactions
12. Gases/Gas Laws/Kinetic Theory
17. Water, Aqueous Solutions

Type of Material: Student Journal Article
Building on: Gases, Radioactivity, chemical reactions
Leading to: Viscosity, pH, acid rain
Links to Physics: Heat, nuclear, radioisotopes
Links to Biology:
Activity Description: Discusses volcanic eruptions, how and why they occur and their links to topics such as acid rain.
The article describes how ozone is both formed and destroyed in the stratosphere and how it is formed in our immediate breathable atmosphere by the action of sunlight on various pollutants. It explains why ozone in the stratosphere is good, while ozone at street level is harmful. It discusses what is actually happening to earth’s protective layer of ozone and why.

Activity Description:

Students generate carbon dioxide through a simple chemical reaction. They study its properties, both physical and chemical.

Activity Description:

Article describes the basic principles behind the operation of a model rocket, both chemical and physical.
Number and Topic: 8. Chemical Reactions

12. Gases/Gas Laws/Kinetic Theory

Type of Material: Student Journal Article

Building on: Chemical reactions, gases

Leading to: Reaction rates

Links to Physics: Motions and forces

Good Stories: Given the ubiquitous presence of airbags in modern automobiles, it is surprising to realize that the first crash between two automobiles equipped with airbags occurred in 1990.

Activity Description: Article presents the history of the development of airbags and does a thorough job of explaining the chemical reactions and physical processes involved in their operation.

Number and Topic: 8. Chemical Reactions

9. Stoichiometry

12. Gases/Gas Laws/Kinetic Theory

Type of Material: Student Journal Article

Building on: Gas laws, chemical reactions

Leading to: Explosive mixtures

Links to Physics: Gas laws

Good Stories: Article deals with a “mystery” explosion of a tire that was being repaired. It discusses how the use of a can of “instant flat tire fixer” was the cause of the explosion, and it goes into the specific chemical reactions involved as well as their stoichiometry.

Number and Topic: 10. Phases, Solids, Liquids and Gases (States of Matter)

12. Gases/Gas Laws/Kinetic Theory

17. Water, Aqueous Solutions

Type of Material: Student Journal Article

Building on: States of matter, density, gases, water

Leading to: Heat capacity, refraction, Henry’s Law

Links to Physics: Refraction, motion and forces

Links to Biology: Ecosystems

Good Stories: Author relates her personal experiences while learning how to Scuba dive.

Activity Description: Article relates the author’s experiences while Scuba diving and then tries to explain the scientific reasons behind the phenomena, for example, why submerged objects appear to be closer or why colors fade.
<table>
<thead>
<tr>
<th>Number and Topic:</th>
<th>12. Gases/Gas Laws/Kinetic Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source:</td>
<td>ChemMatters, April 2002, pp. 4-5, “Hot Air Balloons, Gas and Go”</td>
</tr>
<tr>
<td>Type of Material:</td>
<td>Student Journal Article</td>
</tr>
<tr>
<td>Building on:</td>
<td>Gas behavior and Gas Laws</td>
</tr>
<tr>
<td>Leading to:</td>
<td>Archimedes’ Principle</td>
</tr>
<tr>
<td>Links to Physics:</td>
<td>Motion and forces, gravity, heat</td>
</tr>
<tr>
<td>Links to Biology:</td>
<td>Good stories about early attempts to fly hot air balloons</td>
</tr>
<tr>
<td>Activity Description:</td>
<td>A good general treatment of hot air balloons, their history, and the scientific principles that underlie their operation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number and Topic:</th>
<th>12. Gases/Gas Laws/Kinetic Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source:</td>
<td>ChemMatters, April 2002, p. 6, “Try It! Make Your Own Hot Air Balloon”</td>
</tr>
<tr>
<td>Type of Material:</td>
<td>Activity</td>
</tr>
<tr>
<td>Building on:</td>
<td>Gases/gas laws, kinetic theory</td>
</tr>
<tr>
<td>Leading to:</td>
<td>Can lead to advanced calculations related to Archimedes’ Principle if desired.</td>
</tr>
<tr>
<td>Links to Physics:</td>
<td>Motion and Forces, Gravity, Heat</td>
</tr>
<tr>
<td>Links to Biology:</td>
<td>Good stories about early attempts to fly hot air balloons</td>
</tr>
<tr>
<td>Activity Description:</td>
<td>This contains directions for constructing and flying a hot air balloon, along with some possible extensions of the activity. The Teacher’s Guide contains links to possible alternate activities.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number and Topic:</th>
<th>12. Gases/Gas Laws/Kinetic Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Material:</td>
<td>Student Journal Article</td>
</tr>
<tr>
<td>Building on:</td>
<td>Elements</td>
</tr>
<tr>
<td>Leading to:</td>
<td>Gases, solubility, Henry’s Law</td>
</tr>
<tr>
<td>Links to Physics:</td>
<td>Good stories about early attempts to fly hot air balloons</td>
</tr>
<tr>
<td>Links to Biology:</td>
<td>Activity Description:</td>
</tr>
<tr>
<td>Activity Description:</td>
<td>The entire article is a great “story.” Terrific story about “hydrogen beer,” a beer said to contain hydrogen gas rather than carbon dioxide. Hydrogen beer is a hoax, an “urban legend” but was actually able to fool enough educated people so that it made it to a reputable physics Website as well as a chemistry textbook. Applying simple notions of solubility, etc., should have revealed its obvious nonvalidity.</td>
</tr>
</tbody>
</table>
Number and Topic: 12. Gases/Gas Laws/Kinetic Theory
Type of Material: Student Journal Article
Building on: Kinetic Theory
Leading to: Example of a practical application of heat flow in nature
Links to Physics: Energy, kinetic theory, heat
Links to Biology: Animals, adaptations
Good Stories: Interesting story of how a duck uses a clever arrangement of veins and arteries to prevent excessive heat loss through its feet when swimming in icy water. Activity Description: Given the large surface area of a duck’s feet, it would seem that they would lose an excessive, perhaps unrecoverable amount of heat when swimming in icy water. But through an ingenious arrangement of veins and arteries, they manage to keep heat loss to a minimum.

Number and Topic: 12. Gases/Gas Laws/Kinetic Theory
Source: *ChemMatters*, Dec. 2000, pp. 12-12, “Noisy Knuckles and Henry’s Law”
Type of Material: Student Journal Article
Building on: Gas laws, aqueous solutions
Leading to: Henry’s Law
Links to Physics: Structure of a knuckle joint
Links to Biology: Good Stories: Article describes the structure of the human knuckle and what happens when you “crack” a knuckle. It connects to both biology and to Henry’s Law.

Number and Topic: 12. Gases/Gas Laws/Kinetic Theory
Source: *ChemMatters*, Feb. 2000, pp. 4-6, “Mt. Everest: Climbing in Thin Air”
Type of Material: Student Journal Article
Building on: Gases
Leading to: Dalton’s Laws of Partial Pressure, Le Chatelier’s Principle
Links to Physics: Electromagnetic spectrum
Links to Biology: Cells, respiration, hemoglobin
Good Stories: Discusses how atmospheric pressure changes with altitude and how this leads to a shortage of oxygen at high altitudes. This is then related to the great challenges that face any person attempting to climb Mt. Everest.
Number and Topic: 12. Gases/Gas Laws/Kinetic Theory
17. Water, Aqueous Solution
18. Reaction Rates and Kinetics

Type of Material: Student Journal Article including a fun quiz
Building on: Gases
Leading to: Colligative properties of solutions
Links to Physics: Heat, energy
Links to Biology: Coagulation of proteins
Good Stories: There is a “fun” quiz at the end of the article.
Activity Description: Article discusses how pressure varies with altitude and how this affects the boiling point of water, which in turn affects the time required to hard boil an egg.

Number and Topic: 12. Gases/Gas Laws/Kinetic Theory
17. Water, Aqueous Solutions

Type of Material: Student Journal Article
Building on: Gases
Leading to: Water, aqueous solutions
Links to Physics:
Links to Biology:
Good Stories: On August 21, 1986, a cloud of carbon dioxide was released from Lake Nyos in Cameroon, West Africa, killing 1,724 people and several thousand animals.
Activity Description: Article explains how carbon dioxide accumulated in Lake Nyos over a period of years, why it remained in the lake at high concentrations, and what probably caused it to be rapidly released, resulting in the disaster.

Number and Topic: 12. Gases/Gas Laws/Kinetic Theory

Type of Material: Student Journal Article and Activity
Building on: Personal experience with popcorn
Leading to: Scientific principles that underlie its popping behavior
Links to Physics: Gas laws
Links to Biology: The structure of popcorn
Good Stories:
Activity Description: This article discusses the structure of popcorn and what results in its “popping” when heated. The article is followed by a student activity that investigates and even measures the percent moisture in a popcorn kernel.
Demo: Acid in the Eye – Safety
Demo: A Burning Candle - Observations
Demo: Classifying Matter
Demo: Flaming Vapor Ramp—Safety Demo
Lab: Observation and Experiment - Introduction to the Scientific Method
Lab: Separation of a Mixture - Percent Composition
Lab: What is a Chemical Reaction - Evidence of Change
Lab: Common Gases—Physical and Chemical Properties
Lab: Preparing and Testing Hydrogen Gas—A Microscale Approach
Lab: Carbon Dioxide - What a Gas—Microscale Gas Chemistry

ICE LABS
Online Descriptions and Experiments

No activities for this topic.

Technology-Adapted Labs

No activities for this topic.